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Abstract
We consider electronic transport across one-dimensional heterostructures described by the Dirac
equation. We discuss the cases where both the velocity and the mass are position dependent.
We show how to generalize the Dirac Hamiltonian in order to obtain a Hermitian problem for
spatial dependent velocity. We solve exactly the case where the position dependence of both
velocity and mass is linear. In the case of velocity profiles, it is shown that there is no
backscattering of Dirac electrons. In the case of the mass profile, backscattering exists. In this
case, it is shown that the linear mass profile induces less backscattering than the abrupt step-like
profile. Our results are a first step towards the study of similar problems in graphene.

1. Introduction

Most of the accumulated knowledge about the physics of
heterostructures assumes that the electrons in these materials
are effectively described by the Schrödinger equation, with
a position dependent mass. The common belief is that the
Dirac equation is of no use in condensed matter physics (spin–
orbit coupling can be treated using the Pauli version of the
Schrödinger equation). The discovery of graphene [1, 2]
changed this perspective drastically. Condensed matter
physicists are now facing a condensed matter system where
the effective low-energy model for the quasi-particles is that
of an ultrarelativistic, i.e. massless, Dirac equation, albeit
with an effective Fermi velocity that is much lower than
the velocity of light. In graphene the Fermi velocity is
vF = c/300, with c the velocity of light. In fact, since the
isolation of graphene crystallites [1–3] a renovated interest
in the properties of the massless Dirac equation in 2 + 1
dimensions has started to emerge [3, 4]. Although our interest
in this paper is in the backscattering properties of electrons
effectively described by the Dirac equation in 1+1 dimensions,
as an effective low-energy theory of the electronic properties
of a quasi-one-dimensional solid, we shall revise some of the
properties of Dirac electrons in the context of graphene, given
the accumulated amount of evidence for Dirac fermions in
graphene.

How can the low-energy description of a solid be given by
an effective Dirac-like equation? In one-dimensional physics,

this occurs due to the linearization of the spectrum close to
the Fermi momentum, which introduces right- and left-movers
with a linear energy–momentum relation. Another possibility,
that we discuss in the bulk of the paper, is by having two atoms
per unit cell with a special type of hopping. In two dimensions,
this possibility has been realized by graphene. The electrons
in graphene are confined to move within the π orbitals of the
system, formed from the overlap of the 2pz atomic orbitals
of a single carbon atom. The transport and optical properties
of graphene are determined essentially by the behavior of the
π electrons. The electronic density is such that graphene
has one π electron per carbon atom, and is therefore a half
filled system. It turns out that the band structure of graphene
around the Fermi surface is highly non-standard, since the
relation between the momentum and the energy is linear, with
a proportionality coefficient given by vF � 1 × 106 m s−1 and
termed the Fermi velocity. In fact, the Fermi surface is reduced
to two points (the so called Dirac points K and K ′) in the
Brillouin zone, with a zero density of states at the Fermi points.
This fact gives graphene its non-conventional properties.

Starting from a k · p approach [5], adapted to degenerate
bands off the �-point [6], we obtain an effective Hamiltonian
in real space, valid around the K point, having the form

H = vFσ ·p, (1)

where σ = (σx , σy) is a vector using the Pauli matrices and
p = −ih̄(∂x , ∂y). The Hamiltonian (1) is nothing but the
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Dirac Hamiltonian for massless particles in 2 + 1 dimensions,
with an effective light velocity vF. Clearly, one expects that
the physical properties of such a system will be different from
those where the Schrödinger equation is valid. Note that this
situation is an example of complex emergent behavior [12],
since the original problem was that of independent electrons
(and therefore Schrödinger-like) in a periodic potential.

Those electrons in graphene lying close to the Fermi
points (K and K ′) will have a different response to external
potentials than those in other materials described by the
Schrödinger equation. In fact, for Schrödinger electrons, if
we consider that the potential varies at a given point in space
from zero to a finite value V0 (the so called step potential),
there is always a finite fraction of impinging electrons that are
reflected back. Moreover, if V0 is greater than the energy of
the impinging particles, there will be an exponential attenuated
wavefunction in the region where the potential is finite.

For Dirac electrons the situation is different. It was shown
by Klein [16] that Dirac particles can not be confined by
an arbitrary large potential V0. In fact, they pass through
a strong repulsive potential without the exponential decay
that characterizes Schrödinger particles. This is called Klein
tunneling. If the particles are massless and moving in one
dimension the situation is even more dramatic, since there
is no backscattered probability flux, no matter how large the
potential is [13, 14].

In addition to external potentials, a particle propagating in
solid state systems can face a situation where its effective mass
changes in space. This possibility occurs in heterostructures,
where the mass of the particle is written as m(r), r being
the position of the particle. In this situation, the Schr̈odinger
equation has to be modified, in order to comply with
hermiticity and flux conservation.

If the particles are described by the Dirac equation, the
information on the material properties is encoded both in the
Fermi velocity [6] and in the mass. We can then imagine
the possibility of producing a heterostructure where the Fermi
velocity vF(r) and the mass change with the position of the
particle. As we show below, even in this case, there will not
be backscattering if the particle is massless and the velocity
is allowed to vary from point to point. In the context of
graphene physics, a position dependent Fermi velocity was
already considered in the case of curved graphene [7]. Another
possibility of producing both a Fermi velocity and a mass
term that are position dependent is to subject the system to
strain. It has already been shown using ab initio calculations,
in the context of graphene physics, that strain leads to gap
formation [8, 9]. It is to be expected that for general strain
different parts of the material present local values of Fermi
velocity and energy gap. Also in the case of graphene, it was
shown that depositing the material on top of boron nitride leads
to gap formation [10].

In this paper we discuss several possibilities for the
scattering of Dirac particles through a region where both
the velocity and the mass are position dependent. Although
our motivation is to study graphene strips [15] in a later
publication, we start by giving two exact solutions for one-
dimensional systems. The generalization to a quasi-one-
dimensional system, such as a narrow nano-wire, is easy to

obtain and will be given in a follow-up publication. In order
to see the differences between the Schrödinger and the Dirac
problems, we start by revising the case of one-dimensional
heterostructures described by the Schrödinger equations and
later move to the study of the Dirac case.

2. Warming up: the Schrödinger electrons in 1D

In order to compare how the scattering of Schrödinger
electrons differs from that of Dirac particles, we give a brief
account of the scattering of electrons by the interface of a
heterostructure.

Let us consider the case of 1D Schrödinger electrons with
position dependent effective mass m(x), such that m(x) = m−
for x < 0 and m(x) = m+ for x > 0. The boundary conditions
in this case are (see final paragraph of this section; for more
general boundary conditions see [11])

ψ−(0) = ψ+(0), (2)

1

m−
d

dx
ψ−(0) = 1

m+
d

dx
ψ+(0). (3)

We consider that the particles are moving from the left to the
right. Therefore the wavefunction is

ψ−(x) = eikx + re−ikx , (4)

ψ+(x) = teipx , (5)

where the values of k and p are fixed by energy conservation:

E = h̄2k2

2m− = h̄2 p2

2m+ . (6)

The reflectance |r |2 is determined from the boundary
conditions as

|r |2 = (m+k − m− p)2

(m+k + m− p)2
, (7)

which has the limiting value |r |2 → 1 for m+ → ∞. The
transmittance coefficient |t|2 is

|t|2 = 4(m+k)2

(m+k + m− p)2
. (8)

We can check now that the boundary conditions used for the
wavefunction are the correct ones, since they satisfy the flux
current conservation. Using absolute values, we have indeed

j inc = j reft + j trans, (9)

with j inc = h̄k/m+, j reft = |r |2h̄k/m+, and j trans =
|t|2h̄ p/m−.

The problem just described represents a heterostructure,
where two materials are glued together (due to similar
lattice constants), having different effective masses in the two
materials. The used boundary conditions are obtained writing
the Hamiltonian as

H = − h̄2

2m

d

dx

1

m(x)

d

dx
. (10)
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This choice defines a Hermitian problem1 since
∫

dx (Hψ)∗
ψ = ∫

dx ψ∗ Hψ . The construction of (10) guarantees that the
total probability flux is conserved. The boundary condition (3)
follows immediately from writing the Hamiltonian in the
Sturm–Liouville form.

3. Dirac electrons in 1D

Let us now study the case of the Dirac Hamiltonian. We are
interested in cases where both the velocity and the mass of the
particles depend on their position in space. We study first the
case of massless Dirac particles, like those present in graphene.
Later we add the mass term. The Hamiltonian for a massless
quasi-particle described by an effective Dirac equation, with an
effective velocity of light vF, is given by

H = vFσx
h̄

i

d

dx
, (11)

where σx is the x Pauli matrix. Let us now consider that
we make a heterostructure of two different materials, both of
them described by an effective Dirac equation, such as (11).
An example could be a strip of the material where part of it
is subjected to strain and other part is strain free; this leads
to different velocities in the two parts of the material. This
situation calls for a model where vF is position dependent:
vF = vF(x). Although this situation does not make sense
in high-energy physics, it is quite conceivable in condensed
matter physics, since the value of vF is determined by the
material under consideration—different materials can have
different Fermi velocities.

The trivial replacement vF → vF(x) renders the problem
non-Hermitian, as can be seen by applying the definition given
above, when we discussed the Schrödinger case. There is
however a way out. It is a simple matter to show that the
operator

H = √
vF(x)σx

h̄

i

d

dx

√
vF(x), (12)

is Hermitian and reduces to equation (11) in the particular
case vF(x) = vF. Note that the derivative will act on the
product

√
vF(x)ψ(x). We stress that we are not studying

the scattering of relativistic particles in condensed matter
systems, but instead describing the scattering of particles
represented by an effective low-energy model that is formally
equivalent to the Dirac equation (a situation that occurs in
graphene). It would be interesting to derive equation (12) from
a microscopic Hamiltonian. In appendix A we give a tight-
binding model whose effective low-energy theory is given by
equation (12). Problem (12) has a spinorial wavefunction of
the form ψ† = (ψ∗

1 , ψ
∗
2 ) and the probability flux is computed

as Sx = vF(x)ψ†σxψ , as can be shown using the traditional
derivation of computing the time change of the probability
density [17].

1 Equation (10) is a particular case of a Sturm–Liouville operator, which has
the general form

− d

dx

(

p(x)
d

dx

)

+ q(x)y = λw(x)y,

where λ is to be determined from the boundary conditions, and p(x), q(x),
and w(x) are given functions. Sturm–Liouville problems are Hermitian.

The eigenproblem Hψ = Eψ , with H given
by equation (12), corresponds to two coupled first-order
differential equations of the form

√
v(x)

h̄

i

d[√v(x)ψ2(x)]
dx

= Eψ1(x), (13)

√
v(x)

h̄

i

d[√v(x)ψ1(x)]
dx

= Eψ2(x). (14)

It is straightforward to show that the two first-order differential
equations given above can be put in Sturm–Liouville form:

− d

dx

[

vF(x)
d

dx
y1(x)

]

= E2

vF(x)h̄
2 y1(x), (15)

with y1(x) = √
vF(x)ψ1(x), p(x) = vF(x), λ = E2/h̄2, and

w(x) = 1/vF(x), and ψ2(x) obtained from

ψ2(x) = h̄

iE

√
vF(x)

d

dx
[√vF(x)ψ1(x)]. (16)

If the velocity profile changes continuously, one expects that
the continuity of the wavefunction should be valid. If the
velocity profile changes abruptly at a given point in space, say
at x = 0, from v(x) = v−, for x < 0, to v(x) = v+, for x > 0,
one has to use equations (13) and (14) to derive the boundary
conditions. Defining y2(x) = √

vF(x)ψ2(x) equations (13)
and (14) can be written as

h̄

i

d[y2(x)]
dx

= E
y1(x)

v(x)
, (17)

h̄

i

d[y1(x)]
dx

= E
y2(x)

v(x)
. (18)

Integrating equations (17) and (18) using a symmetric
infinitesimal interval around x = 0 one obtains the condition

yi(0
−) = yi(0

+), (19)

with i = 1, 2. Note that condition (19) implies the
discontinuity of the wavefunction. Let us now move to the
solution of several particular cases.

3.1. The step-like velocity profile

Let us consider the case

vF(x) = v−
F θ(−x)+ v+

F θ(x). (20)

The solution of the Dirac equation reads

ψ−(x) =
(

1
1

)

eiqx + r

(
1

−1

)

e−iqx , (21)

and

ψ+(x) = t

(
1
1

)

eipx , (22)

with E = v−
F qh̄ and E = v+

F ph̄. The above wavefunctions
were obtained by solving the Dirac equation for x ≷ 0,

3
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where the velocity is constant. Using these solutions and the
boundary condition (19) one obtains

√
v−(1 + r) = √

v+t,
√
v−(1 − r) = √

v+t, (23)

which is satisfied only for r = 0. Had we considered the
general case of both a velocity profile (20) and a potential
profile of the form

V (x) = V0 θ(x), (24)

under the condition E > V0, the boundary conditions would
still give r = 0. This result is called Klein tunneling [16]. If
we consider the same velocity and potential profiles, but now
take the energy E < V0, the boundary conditions still give the
result (23), but the wavefunction of the propagating mode for
x > 0 is now different and given by

ψ+(x) = t

(
1
1

)

e−ipx . (25)

In this case the result will also be r = 0. The conclusion is that
it is not possible to backscatter massless Dirac electrons with a
step-like velocity and potential profiles in 1D.

3.2. The linear velocity profile with massless particles

We have seen that an abrupt change of the velocity at the
interface produces no reflected particles. Let us now study the
case of a smooth change in the velocity from v−

F to v+
F . (The

result can be guessed from the outset!) To this end, we choose
the profile

vF(x) = v−
F θ(−δ− x)+ (v̄ + x
) θ(δ− |x |)+ v+

F θ(x − δ),

(26)
where we have defined v̄ and 
 as

v̄ = v−
F + v+

F

2
, (27)


 = v+
F − v−

F

2δ
. (28)

For the cases x < −δ (region I) or x > δ (region III) the Fermi
velocity is constant and the solution of the Dirac equation is
elementary, as we have seen before. The interesting case is
therefore the region |x | < δ (region II). In this case we have to
use the Dirac equation in the form (12). Explicitly, we have to
solve the problem Hψ = Eψ with H given by

H = √
v̄ + x
σx

h̄

i

d

dx

√
v̄ + x
. (29)

Writing the differential equations satisfied by the spinors, we
obtain for the ψ1 spinor (considering the substitution y =√
v̄ + x
ψ1) the equation

− v2
F(x)

d2y

dx2
−
vF(x)

dy

dx
= ε2 y, (30)

with ε2 = E2/h̄2. Making the replacement

z = v̄ + x


v̄
≡ θ(x), (31)

we obtain the result

z2 d2y

dz2
+ z

dy

dz
+ ν2 y = 0, (32)

with ν2 = ε2/
2. Making the additional replacement ω =
ln z, equation (32) is reduced to that of the harmonic oscillator2

d2 y

dω2
+ ν2y = 0. (33)

The general solution of equation (33) is elementary and from it
one obtains y(x) given by

y(x) = A sin[νLθ(x)] + B cos[νLθ(x)], (34)

with

Lθ(x) = ln
v̄ + x


v̄
. (35)

The component ψ1 of the spinor is obtained from ψ1(x) =
y(x)/

√
vF(x), andψ2 is obtained using equation (16) and reads

ψ2(x) = h̄

iE

√
vF(x)

dy (x)

dx
. (36)

The boundary conditions are ψ I(−δ) = ψ II(−δ) and ψ II(δ) =
ψ III(δ), and can be written as3

⎛

⎜
⎜
⎜
⎝

−eikδ S−/
√
v−

F C−/
√
v−

F 0

eikδ C−λ− −S−λ+ 0

0 S+/
√
v+

F C+/
√
v+

F −eiqδ

0 C+λ− −S+λ+ −eiqδ

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎝

r
A
B
t

⎞

⎟
⎠

=
⎛

⎜
⎝

e−ikδ

e−ikδ

0
0

⎞

⎟
⎠ (37)

with
S± = sin[νLθ(±δ)], (38)

C± = sin[νLθ(±δ)], (39)

λ± =
h̄
√
v±

F

iE




v̄

ν

θ(±δ) . (40)

The fraction of reflected flux is given by |r |2 and the
transmitted flux is 1 − |r |2 = v+

F |t|2/v−
F . The explicit

evaluation (which is somewhat lengthy) of the coefficients
gives

|r |2 = 0, (41)

|t|2 = v−
F

v+
F

, (42)

and therefore the electrons are totally transmitted across
the heterojunction. Of course this result could have been
anticipated from the conclusions of section 3.1, since it is
always possible to represent a well behaved function by a sum
of infinitesimal rectangles. (It is however elegant to have an
exact solution to a given problem.)

2 One should note that the solution of equation (32) can also be obtained
by noticing that y = zm is a solution if m2 = −ν2, leading to y(z) =
Az iν + Bz−iν.
3 Note that the dimensions of A and B are

√
L/T , and λ± has dimensions of√

T/L .
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Figure 1. Plot of equation (45) as a function of the dimensionless
energy.

3.3. The linear velocity profile with massive particles

We can now use what we have just learned to a deal with a
more general situation where the electronic spectrum changes
due to a change of the material. The simplest case is that where
for x = δ the mass of the quasi-particles jumps from zero to
a finite value. The connection between the two materials is
represented by the linear profile of the velocity discussed in
section 3.2. The mass profile is

m(x) = m θ(x − δ), (43)

that is, the change is velocity takes place outside the region of
finite mass. Since the particle has a finite mass the spectrum

changes to E = ±
√
v2+q2 + m2v4+, and the wavefunction in

this region changes to

ψ III(x) = t

(√
E2 − m2v4+
E − mv2+

)

e−iqx . (44)

The overall modification is the replacement of eiq by√
E2 − m2v4+eiq in the third row, and of eiq by (E − mv2+)eiq

in the fourth row. Working out the calculation of |r |2 we obtain

|r |2 = −[1 + 2ε(−ε +
√
ε2 − 1)], (45)

with ε = E/(mv2+). As expected, the result does not depend
on δ and on v±

F , for the reasons discussed in section 3.2. A plot
of equation (45) is given in figure 1. The situation is the same
if the mass profile is chosen as

m(x) = m θ(x + δ), (46)

that is, the linear profile rises inside the massive region.

3.4. The linear mass profile

We have seen above that the linear velocity profile does not
contribute to the backscattering of Dirac fermions, even when
it is combined with a region where fermions are massive. In
fact, any velocity profile produces no backscattering in one
dimension. All the backscattering comes from the change in

the dispersion, due to the presence of the mass term. This fact
motivates the question of what form of the wavefunction and of
the coefficient |r |2 is if the mass does not change abruptly but
in a smooth way. A choice for the change of the mass profile,
leading to an exact solution, is that described by

m(x) = m θ(x − δ)+ m
x

δ
θ(x)θ(δ − x). (47)

We approach the solution of the scattering problem by
solving first the Dirac equation subjected to a mass profile
m(x) = m x

δ
. The method of solution is inspired by that

used for the 3+1 Dirac equation [18, 19]. In this case the
Fermi velocity is constant, and therefore we have to solve
equation (11) with the additional term σzmv2

F
x
δ
ψ:

vFσx
h̄

i

dψ

dx
+ σzmv2

F

x

δ
ψ = Eψ. (48)

The solution of this problem proceeds in several steps. The
first is to operate on the left-hand side of equation (48) with the
operator

d

dx
σyσz . (49)

After some algebra we obtain the following result:

h̄2v2
F

d2ψ

dx2
= −[(E2 − m2v4

Fx2/δ2)+ σy h̄mv3
F/δ]ψ. (50)

The two components of the spinor are still coupled in
equation (50). In order to decouple them we use the unitary
transformation

φ = U †ψ, (51)

U =
(

1 0
0 i

)

. (52)

The above transformation changes σy to σ̃y = U †σyU , which,
still mixing the spinors in equation (53) below, does it with the
same sign (this is a crucial step). After applying the unitary
transformation we obtain

h̄2v2
F

d2φ

dx2
= −[(E2 − m2v4

Fx2/δ2)+ σ̃y h̄mv3
F/δ]φ. (53)

We now introduce two new functions defined by F± = φ1±φ2,
where φi (with i = 1, 2) are the components of the spinor φ.
In terms of the functions F± the eigenproblem takes the form

−h̄2v2
F

d2 F±
dx2

+ [m2v4
Fx2/δ2 − ε2

±]F± = 0, (54)

where ε2± = E2 ± h̄mv3
F/δ. The general solution of

equation (54) is given in terms of parabolic cylinder functions
Dν(x) (see appendix B)

F±(x) = A±Dν±
1
(
√

2(b/a)1/4x)+ B±Dν±
2
(i
√

2(b/a)1/4x),
(55)

with

ν±
1 = −1

2
+ ε2±

2
√

ab
= ν − (1 ∓ 1)/2, (56)

ν±
2 = −1

2
− ε2±

2
√

ab
= −ν±

1 − 1 (57)

5
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ν = E2δ

2h̄v3
Fm
, (58)

a = h̄2v2
F, (59)

b = v4
Fm2/δ2. (60)

As we were looking for the solution of the problem valid for
all values of x , the functions Dν(x) with imaginary argument,
since they are not real and are not normalizable in the infinite
volume, had to be excluded. Therefore, in the limit x → ±∞
the normalizable solutions are those where F±(x) represents
the one-dimensional harmonic oscillator wavefunctions (see
appendix C). Therefore the solution in the interval x ∈
[−∞,∞] is

F±(x) = 2A±Dν±
1
(
√

2(b/a)1/4x). (61)

This choice guarantees that the wavefunction is well behaved
at x → ±∞ when ν±

1 is equal to a positive integer (see
appendix C). Therefore, in the infinite volume, the solution
of equation (50) takes the form

ψ(x) =
(

A+Dν+
1

+ A−Dν−
1

iA+Dν+
1

− iA−Dν−
1

)

, (62)

where the argument of the parabolic cylinder functions has
been omitted for simplicity. We still have to check whether
equation (62) is the solution of equation (48). Introducing the
solution (62) in equation (48) we obtain that the wavefunction
is a solution if

A− = �ν

E
A+, (63)

� = vFh̄

√
2v2

Fm

vFh̄δ
= vFh̄/β. (64)

What we have discussed so far assumes that equation (48)
holds for every x . Our interest, however, is in the scattering
problem of electrons when equation (48) holds for x ∈ ]0, δ[.
In this case, the general solution (55) with both real and
complex wavefunctions must be used. The strategy is the same
as used before. We know at the outset that the solution of
equation (48) is obtained from solution (62) by fixing the value
of a constant, as in equation (63). The final solution is

ψ(x) = A

(
Dν(x/β)+ ν�/E Dν−1(x/β)

iDν(x/β)− iν�/E Dν−1(x/β)

)

+ B

(
D−ν(ix/β)+ iν�/E D−ν−1(ix/β)

−iD−ν(ix/β)− ν�/E D−ν−1(ix/β)

)

(65)

which is valid in the region x ∈]0, δ[. As in section 3.2, we
have the incoming wavefunction given by equation (21), for
x < 0, and the transmitted one given by equation (44), for
x > δ. The reflected and transmitted amplitudes r and t ,
respectively, are obtained by imposing the continuity of the
wavefunction at x = 0 and δ. In figure 2 we give some
numerical examples of our calculation. It is clear from figure 2
that the smoothness of the change of the mass profile leads
to a larger transmittance, for a given energy, than when the
mass profile changes abruptly. Also, when the change in the
value of the mass takes place over a relatively large region, the
transmittance shows the presence of resonances, as can be seen
in panel (c) of figure 2.

(a)

(b)

(c)

Figure 2. Transmittance of Dirac electrons across a region where the
mass profile changes according to equation (47). The dotted line
represents the transmittance in the case of an abrupt change of the
mass profile, as given by equation (45). The energy gap is
represented by the value of mv2

F. In panel (a) we give the results for a
value of δ of 1 nm. In panels (b) and (c) we plot the same but for
δ = 10 nm. In panel (c) we give a zoom-in of the solid curve of panel
(b); the existence of resonances in the transmittance is clear. The
Fermi velocity is 106 m s−1, leading to vFh̄ = 0.66 eV nm.

(This figure is in colour only in the electronic version)

4. Discussion and conclusions

We have studied several scattering problems using a modified
version of the Dirac Hamiltonian which incorporates the
possibility of a spatial dependent velocity and mass terms.
Two exact solutions were given. We showed that in the
case of a velocity profile the modification of the original
Dirac Hamiltonian is necessary, in order to have a Hermitian
problem. We have shown that Klein tunneling is not suppressed
by a change in the velocity profile, with a transmittance always
equal to unity. This was understood by studying the case of
an abrupt change in the velocity profile and also by solving
exactly the case where the velocity changes linearly across a
given region.

We have also studied the case where the mass term
depends on position. For this situation, we solved the cases
of an abrupt change of the mass value and of a linear change
of the mass profile. In both cases we see the presence of
backscattering, with values of the transmittance smaller than
unity. The smoother mass profile induces less backscattering.

It is interesting to consider next the case of Dirac electrons
in a strip of finite width W , a situation relevant for graphene
strips, and see if in this case a position dependent velocity
profile does produce backscattering. This will be considered
in a follow-up publication.
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Appendix A. A derivation of the Dirac equation with
a position dependent velocity

Consider a one-dimensional tight-binding Hamiltonian with
two atoms per unit cell such that the hopping parameter within
a unit cell n is −tn and among nearest unit cells is tn . The
Hamiltonian in second quantization reads

H =
∑

n

[−tn(a
†
nbn + b†

nan)+ tn(a
†
nbn−1 + b†

n−1an)]. (A.1)

Then in the case tn = t (the hopping is independent of the unit
cell) the spectrum of the electrons is

Eα=± = α2t| sin(kc/2)|, (A.2)

with c is the length of the unit cell vector. Close to k = 0 (zero
energy) the spectrum is linear in momentum and a massless
Dirac spectrum is generated with a Fermi velocity given by vF.
Let us now assume the general case of a tn dependent on the
unit cell position, and obtain from the Hamiltonian (A.1) the
effective field-theoretical model that describes the system at
low energy (E � 0). Since the momentum close to which the
Dirac spectrum develops is k = 0, we can write immediately
the effective field-theoretical model as

H = −1

c

∫
dy t (y)

[

a†(y)c
db (y)

dy
+ c

db† (y)

dy
a(y)

]

,

(A.3)
where we have used the expansion b†(y − c) � b†(y) +
cd[b†(y)]/dy. Integrating by parts the second term of
equation (A.3) and using the Pauli matrices to help condensing
the results we obtain

H = 1

c

∫
dy

[

�†
√
vy(y)σy py

√
vy(y)� +�† cσx

2

dt (y)

dy
�

]

(A.4)
with v(y) = ct (y)/h̄ and �† = [a†(y)b†(y)]. The first term
in equation (A.4) is our proposed Hamiltonian (12).

Appendix B. Weber’s differential equation

We give here some basic information on the Weber’s
differential equation, aiming to give the text a self-contained
nature and to fix notation and definitions. Weber’s differential
equation is defined as

y ′′(z)+ (ν + 1/2 − z2/4)y(z) = 0, (B.1)

and its two independent solutions are the parabolic cylinder
functions y(z) = Dν(z) and y(z) = D−ν−1(iz). Equation (54)
is of the general form

y ′′(x)+ (−ax2 + c)y(x) = 0. (B.2)

Making the transformation x = βz, with β given by β =
(4a)−1/4 and ν = −1/2 + cβ2, we reduce equation (B.2) to
Weber’s equation (B.1). Using for a and c the particular values
of our problem we obtain

β =
√

h̄vFδ

2v2
Fm
, (B.3)

and

ν = −1

2
+ ε2±δ

2h̄v3
Fm
. (B.4)

The derivative of the parabolic cylinder functions obeys

D′
ν(z)+ z Dν(z)/2 − νDν−1(z) = 0, (B.5)

Dν+1(z)− z Dν(z)+ νDν−1(z) = 0. (B.6)

Using the results of [20], the solution of Dν(z) can be written
in terms of the Kummer confluent hypergeometric function,
U(a, b, x), as

Dν(z) = 2ν/2e−z2/4U(−ν/2, 1/2, z2/2). (B.7)

The Kummer function U(a, 1/2, z) is computed using the
Kummer confluent hypergeometric function, M(a, b, x), as

U(a, 1/2, z) = √
π

M(a, 1/2, z)

�(a + 1/2)

− 2
√

zπ
M(a + 1/2, 3/2, z)

�(a)
. (B.8)

Appendix C. Eigenvalues of the scalar potential
V (x) = σzmv2

Fx/δ

The problem we introduced in section 3.4 was that of a particle
that moves in a heterostructure with a mass dependent position.
We can, however, think of this problem as that of a Schrödinger
particle moving in the scalar potential V (x) = m2v4

F(x/δ)
2.

Since equation (54) is that of an one-dimensional harmonic
oscillator, the normalizable solutions have the well known form

zn(u) = π−1/4

√
2nn!e−u2/2 Hn(u), (C.1)

where

u = x

(
V 2

F m

δVFh̄

)1/2

(C.2)

upon the identification

1

m0
↔ 2v2

F, (C.3)

ω2
0 ↔ 4v6

Fm2/δ2, (C.4)

with m0 and ω0 the mass and the frequency of the oscillator,
respectively. The spectrum is obtained from ε2± = 2h̄v3

Fm(n +
1/2)/δ, with n = 0, 1, 2, . . ., leading to

E2
+ = 2h̄v3

Fmnδ−1, (C.5)

E2
− = 2h̄v3

Fm(n + 1)δ−1. (C.6)

Since the energy has to be the same for both F+ and F−,
we choose the solutions4 Fn+ = zn and Fn− = zn−1, with
z−1 = 0. Finally, from the definition F± = φ1 ± φ2, we obtain
(properly normalized)

φ1(x) = [zn(x)+ zn−1(x)]/
√

2, (C.7)

φ2(x) = [zn(x)− zn−1(x)]/
√

2. (C.8)

The above equations are the solution of equation (50).
4 It is interesting to note that the system supports a zero-energy mode:
Fn=0+ = z0 and F−1− = 0.
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